APPENDICES

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Public Land Reports</td>
<td></td>
</tr>
<tr>
<td>Bureau of Land Management</td>
<td>1-2</td>
</tr>
<tr>
<td>Fossil Beds National Monument</td>
<td>3-4</td>
</tr>
<tr>
<td>US Forest Service</td>
<td>5-6</td>
</tr>
<tr>
<td>Colorado State Forest Service – State Lands</td>
<td>7-9</td>
</tr>
<tr>
<td>Division of Wildlife – Dome Rock</td>
<td>10-12</td>
</tr>
<tr>
<td>Mueller State Park</td>
<td>13-14</td>
</tr>
<tr>
<td>Private Lands, CUSP and CSFS</td>
<td>15-17</td>
</tr>
<tr>
<td>B – Land Use Regulations</td>
<td>18-20</td>
</tr>
<tr>
<td>C – Insect and Disease</td>
<td>21-30</td>
</tr>
<tr>
<td>D – Community Ratings by Fire District –</td>
<td>31-35</td>
</tr>
<tr>
<td>2008 Teller County Pre-Disaster Mitigation Plan</td>
<td></td>
</tr>
<tr>
<td>E - Contacts for More information</td>
<td>36-37</td>
</tr>
</tbody>
</table>
BLM manages 3.5-4 million acres of forested lands in Colorado and covers a variety of terrain. These public lands play a vital role in providing open space and contribute to Colorado’s quality of life.\(^1\) Over 2.5 million acres are considered woodlands, dominated by pinon, juniper, and oak. The remaining forested acres consist of traditional commercial tree species such as ponderosa pine, lodgepole pine and Douglas fir. Some of the wood products harvested include sawtimber, firewood, Christmas trees, post and poles, and biomass.

BLM acreage within Teller County is 25,469 acres. Forested lands in Colorado tend to have low productivity rates. Therefore, the BLM’s management focus for forested lands in Colorado is to restore forest health conditions rather than produce commercial timber. BLM does sell non-commercial fuel wood permits, but they are limited to dead and down only.

The following is a summary of fuels projects conducted since 2004 (See map on next page)

<table>
<thead>
<tr>
<th>Lakemoor West</th>
<th>Booger Red Hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004 267 Acres</td>
<td>Hand Thinning</td>
</tr>
<tr>
<td>2005 67 Acres</td>
<td>Hand Thinning</td>
</tr>
<tr>
<td>2006 67 Acres</td>
<td>Prescribed Pile burning</td>
</tr>
<tr>
<td>2008 55 Acres</td>
<td>Broadcast Prescribed Fire</td>
</tr>
</tbody>
</table>

2008 94 Acres	Hydro-axe Modification
2010 162 Acres	Broadcast Prescribed Fire
2011 (planned) 125 Acres	Broadcast Prescribed Fire
Total Acres in Teller County Treated/Planned 2004-2011 837 Acres	

Beyond the Booger Red Hill project, BLM has no other identified or planned fuels reduction projects in the pipeline at the present time within Teller County. Depending on future fuels management budget, there may be some maintenance activities that could be conducted within the treated units on the projects as identified above. This will be determined by continued post treatment monitoring and evaluation to ascertain which projects would benefit from maintenance to protect the investment and preserve the effectiveness of the initial treatment.

\(^1\) http://www.blm.gov/co/st/en.html
Based on future levels of funding, additional broadcast prescribed fire may also be implemented on both of the projects listed above. These activities are usually programmed for completion within the same fiscal year as the funding is allocated.
Florissant Fossil Beds National Monument Fuels Management

Located 35 miles west of Colorado Springs, Florissant Fossil Beds National Monument is a 6,000 acre wonderland of meadows, forests, and wildflowers. At 8,400 feet of elevation, the Monument lies within the montane life zone. Ponderosa Pine, Aspen, Fir, and Spruce are the dominant trees. Wapiti (Elk), mule deer, coyotes, foxes, bears, mountain lions, are some of the large mammals that inhabit the area. Birds of prey scan the meadows for ground squirrels and mice.

The fossils, rocks, hills, and valleys that make up Florissant Fossil Beds N.M. reveal to us an ancient story of redwood forests, volcanic eruptions, and a climate much different than today. In addition to a rich ancient history, the Florissant valley also contains the stories of prehistoric hunting and gathering Paleo-Indians, the Ute and Jicarilla Apache peoples, the travels of a pioneer nation, and of early scientists making their way through discovery into a different time.²

The Hornbek Homestead is located within the boundaries of Florissant Fossil Beds National Monument. It was built in 1878 and owned by Adeline Hornbek a rancher and single mother of four teenage children. It is one of sites in Teller County that is listed on the National Register of Historic Places.

Over 65,000 visitors tour the Fossil Beds each year. The Monument offers over 14 miles of hiking trails and over 80% of the Monument is open to off-trail horseback riding. Ranger-guided hikes and talks are offered during the summer and self-guided nature walks are offered year-round. Two picnic areas are found within the Monument, but no overnight camping is available.

Fuels Management

Historically, the open ponderosa pine and grassland communities that characterize the monument experienced very frequent but low severity fires. This type of fire regime maintains the open appearance of the landscape by eliminating young woody plants and rejuvenating perennial grasses and forbs. During the last century of fire suppression in Colorado, woody species such as pines are able to encroach on grasslands, grow unnaturally thick stands, and hazardous amounts of fuels built up. This, combined with years-long drought conditions, resulted in unnaturally large, devastating wildfires at the turn of the 21st century.

The National Park Service responded by prioritizing fuels reduction for community and natural resource protection adjacent to and within National Parks. Florissant Fossil Beds (FFB) began a program of fuel reduction along the predominantly downwind boundary. This consisted of removing large dead fuels that accumulated on the forest floor, thinning and limbing trees, and removing brush under trees that could act as a ladder for fire to enter the forest canopy. The resulting material was piled and burned under winter conditions. To date this fuels reduction

² http://www.nps.gov/flfo/index.htm
work has covered a 300 foot buffer inside the park’s northern, eastern, and portions of the southern boundaries (roughly 300 acres of critical boundary cleared). Initially, park neighbors were very dubious about the safety of burning of the piles, even during the winter. After several successful and safe seasons of pile burning, the public attitude has become much more supportive as people come to understand the community protection benefits outweigh the low impacts and risk involved.

Much more work is needed in the future to better protect the adjacent communities, preserve the natural resources, and better maintain a natural fire ecosystem. To increase the width of the fuels reduction zone and its effectiveness, broadcast burns are planned in future years. (See map).

In addition to reducing fuel loads these burns will provide an opportunity for many fire adapted plants and animals to continue to thrive. Long term planning extends the thinning, piling, pile burning and broadcast burning to the remaining boundaries once archeological and natural resource surveys and compliance are completed.

Wildfire prevention is not just focused on reducing fuel loads in the forest. A large proportion (over 45%) of FFB is grass and low shrubs with the remainder a mixed conifer forest interspersed with aspen groves. There is a potential for damaging and quick moving grass fires to occur. Some of the largest and most viewed fossils are the sequoia stumps above ground and in these flashy fuels. The heat of a high intensity wildfire could damage the precious remnants of ancient times, as well as the fragile fossil bearing paper-shale that lies just below the surface of the meadows. FFB works with neighboring residents, Fire departments and the Forest Service to reduce the risk of fire moving off of, or into, Monument lands. Do your part to prevent wildfires from starting and enjoy the natural wonders that remain.
Pike and San Isabel National Forest

The USDA Forest Service, Pike District, manages over 190 sq miles of Teller County lands and forests and is the largest public land management agency in the county. In 2001 the Forest Service had undertaken the lengthy process of establishing the Trout-West Hazardous Fuels Reduction Project which is in compliance with the National Environmental Policy Act and Forest Service policy for environmental analysis. According to the Final Environment Impact Statement published June 2003, the guiding principles for this project were:

#4 “Assign highest priority for hazardous fuel reduction to communities at risk and readily accessible municipal watersheds.”

#5 “Restore healthy, diverse and resilient ecological systems to minimize uncharacteristically intense fires on a priority watershed basis. Methods will include removal of excessive vegetation and dead fuels through thinning, prescribed fire and other treatment methods.”

Due to the timely approval of this project in 2003, the USFS was able to begin management and fuels mitigation treatments soon after the Hayman fire and have treated, to date, 12,000 acres of the Trout-West project.
Another new assessment for proposed management was completed and signed February of 2011 for the greater Pikes Peak area identified as Catamount Forest Health and Hazardous Fuel Reduction Project with an anticipated treatment of 21,000 acres. Project areas are in the planning phase.

“This project is needed because of the high potential for catastrophic wildfires to occur in the area. There are hundreds of homes, critical watersheds and significant associated infrastructure at risk in, adjacent to and near the project area. The steadily increasing population and associated development in the area will proportionally increase this risk in the future. Tree thinning, prescribed burning and/or other fuel reduction methods can significantly reduce the hazard of intense fires.

Further, the need for the proposed project is driven by deteriorating forest conditions. Historic fire suppression has created forests that are more susceptible to large scale, high intensity wildfire, as well as insect epidemics. The need to reduce forest fuels has been clearly demonstrated by the recent large-scale high intensity fires occurring across the western United State and on the Front Range of Colorado.”

For more information regarding planned Forest Service fuel reduction in Teller County, please visit the website at www.fs.fed.us (Pike and San Isabel National Forest)

4 Catamount Forest Health and Hazardous Fuel Reduction Project- Environmental Assessment, Oct. 2010
Teller County State Lands /Colorado State Forest Service

History:
In 1876, Colorado was granted admission into the Union and the Federal Government granted, in trust to the state of Colorado, approximately 4.5 million acres of land for the specific purpose of generating revenue to support state schools. (Congress granted lands to all western states for use in establishing and maintaining public schools.) In the original grant, Colorado received sections 16 and 36 in every township. (A section is a block of 640 acres, or one square mile.)

Over the years many of the sections surrounded by national forests have been traded for isolated National Forest land to consolidate the parcels into contiguous units. Some sections have also been sold. Administration of State Trust Lands is vested with the Board of Land Commissioners within the Department of Natural Resources

The Colorado State Forest Service (CSFS) manages the forests on Colorado’s Trust Lands under a silvicultural lease with the Board of Land Commissioners. Essentially the CSFS leases the trees, and does not control other uses or access to the lands. Access to trust lands are controlled by the lessee of the surface rights.

Under terms of the silvicultural lease the CSFS manages the forests through sales of forest products, and profits above CSFS costs are placed in the School Trust.

The CSFS also functions as the forestry division within the Department of Natural Resources. Thus it assists with implementation and administration of forestry practices on State Parks and Wildlife Areas, but overall administration of these lands is through the Division of Parks and Wildlife.

Accomplishments 2005-2011:

Colorado State Forest Service, Woodland Park District office has the responsibility of managing State lands in Teller County. This includes the “State School Sections” where all projects are wood sales only.

This map refers to the Rhyolite Mountain and Grassy Creek School Sections that have been managed to maintain the health of the forest and provide income to Colorado public schools. These management practices are also designed to reduce the risk of catastrophic wildfire impacts.
Rhyolite Mountain (Sec 36, T14S, R70W)

- 2007-2008: Group Selection cut of Englemann Spruce and Aspen-50 acres, 240,000 ft3 of sawtimber and firewood sold
- 2009: 23 cords of firewood sold
- 2010: 30 cords of firewood sold

Grassy Creek (Sec 16, T15S, R69W)

Public firewood site, Permit required. Permits are 10 cords for $100

- 2009-2010: 310 cords of firewood sold
- 2011: 140 cords of firewood sold

Proposed Projects: Wood products will continue to be sold based on demand.

Pikes Peak Watershed Lands

Prior to the creation of the Pike Timber Reserve in 1892, the City of Colorado Springs began amassing large tracts of land on Pikes Peak through various Acts of Congress as well as other means of land acquisition for the purposes of developing a clean and reliable water supply. As these lands accumulated, they were set aside by City Ordinance to be held in trust and protected as watershed reserves for the City’s water supplies. The Pikes Peak Watershed System (PPWS) consists of nearly 13,000 acres owned by the City of Colorado Springs. Colorado Springs Utilities, an enterprise of the City of Colorado Springs, is the responsible agency for ensuring the management of the City’s watershed lands for the ongoing protection of the water supply, infrastructure, and forest resources.

The watershed annually produces more than 5.5 billion gallons of water, or approximately 20 percent of the total water supplied by the Colorado Springs water system. Since 1987, with the completion of the Pikes Peak Watershed Forest Management Plan, Colorado Springs Utilities has managed these lands through cooperative agreements with the Colorado State Forest Service and other State and Federal resource agencies in keeping with the original forest management goals.

Wildfire has always been a common natural disturbance shaping the Pikes Peak ecosystem. Current conditions also suggest wildfire as the biggest threat to the resources of the watershed. Although no major wildfires have occurred on the Pikes Peak Watershed during the past one hundred years or so, the potential for a major wildfire exists.5

There are two primary water collection and storage systems on the PPWS: South Slope and North Slope. The following is a listing of projects completed and planned by CSFS on Watershed lands:

Completed 2005-2010: *(Unless otherwise noted, projects were forest thinning by mechanical mastication)*

- North Slope Unit, 2005, 55 acres
- North Slope Unit, 2006, 100 acres
- North Slope Unit, 2006, 110 acres
- North Slope Unit, 2007, 40 acres
- Rosemont Unit, 2008, 72 acres
- North Slope Unit, 2010, 133 acres
- North Slope Unit, 2010, 3 acres of forest thinning by hand felling and lop and scatter
- North Slope Unit, 2010, 114 acres of prescribed broadcast burning

In Progress:
- North Slope Unit, 2011, 343 acres of forest thinning by mechanical mastication

Planned:
- North Catamount RX fire, approximately 100 acres of broadcast burning annually as conditions permit

CSFS plans approximately 200 to 400 acres of forest management work annually on PPWS properties in both Teller and El Paso Counties.
Dome Rock State Wildlife Area,
Teller County, Colorado

It is the policy of the State of Colorado that wildlife species and their environments are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors. To carry out this policy, the Colorado Division of Wildlife employs a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities.

The following management principles represent some of the core beliefs that guide the Division in fulfilling its mission, creating its goals and management strategies, and in the decision-making processes at all levels of the organization. These principles reflect the Division's most deeply held values and ideals.

- Wildlife conservation, use and enjoyment including the rich traditions of fishing, hunting and wildlife viewing are part of Colorado’s outdoor heritage, economic future, and overall quality of life.
- A primary consideration in wildlife management decisions is to maintain healthy, diverse and abundant wildlife.
- The quality, quantity, and conservation of wildlife habitat are essential to maintaining the state’s diverse wildlife population and wildlife related uses.6

Based on these principles, Dome Rock State Wildfire Area plans and completes habitat improvement projects throughout the 6,980 acre property in targeted locations. This includes thinning of the forest and opening up of the forest canopy to restore and enhance wildlife habitats. A side benefit of this project is the reduction in catastrophic wildfire hazards. In the last five years these projects have included the mechanical treatment of approximately 57.5 acres and 171 acres of ponderosa pine/Douglas–fir habitat types. These treatments were performed near the Colorado Mountain Estates (CME) subdivision on Colorado Parks and Wildlife land.

6 http://www.landscope.org/colorado/partners/Colorado%20Division%20of%20Wildlife/
The following map illustrates the treatment areas where the mechanical felling and stacking of the targeted trees was performed in 2006.

The Colorado Parks and Wildlife (CPW) was responsible for mechanically treating approximately 19 acres on Dome Rock State Wildlife Area. The 19 acres prescription called for the removal of Douglas-fir, Limber Pine and aspen snags. This was performed in June 2011. The CPW used a Timber Axe attached to a New Holland skid steer outfitted with tracks. The treatment took about 2 and half weeks to perform.

Within these treated acres wildlife will be able to find more vegetation, cover and improved habitat; all important factors in ensuring that wildlife will be around for future generations to enjoy.
Mueller State Park Fuels Management

Background

The area which is now Mueller State Park sits at the base of Pikes Peak where elk, black bear, eagles and hawks are able to roam amongst the 5,121 acres of natural land. With the park's groves of aspen trees, each season is a delight for photographers and sightseers alike. Over 200,000 annual visitors to the park traverse the park’s 55 miles of trails on foot, snowshoes, cross-country skis, horseback and mountain bike, depending on the season. Mueller also has a visitor center with educational exhibits, a campground with 132 sites and modern camper services building, and three deluxe rental cabins.

The abundant outdoor recreation opportunities that occur within Colorado’s state parks are directly linked to the unique natural resources, scenic amenities, and historic values that comprise each park. Proactively managing and maintaining these resources is essential, because our visitors are accustomed to outdoor recreation experiences in a high quality, natural setting. Whether camping under an umbrella of stars, rafting a rushing river, snapping a photograph of an eagle, fishing for a trophy trout, or simply accessing a trail to enjoy the scenery, quality natural settings and surroundings make such activities worthwhile.

Natural resource management is a major component of Colorado State Park’s mission that the natural, scenic, scientific, and outdoor recreation areas of this state are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and visitors of this state.

Forest Management

While fire is natural in this environment, the Colorado wildfires of 2000-2002 demonstrated how quick and devastating high intensity wildfires can be. The wildfire’s impact is not limited to State Park lands that burn causing long term disruption and destruction of natural resources and facilities. There is also economic damage to neighboring communities that rely on tourism.

Colorado State Parks works very closely with the Colorado State Forest Service (CSFS) and leverages Great Outdoors Colorado (GOCO) funding in a unique cooperative project. The goal is to conduct work in and around our State Parks, working with neighbors on a landscape scale to reduce the risk of wildfires and improve forest resiliency to insect and disease epidemics.

This partnership has been very successful and due to its demonstrated track record of careful planning and efficient implementation, CSFS has received a $2.5 million dollar grant from FEMA that is the first of its kind for proactive watershed protection. This grant funded fuels mitigation projects at 7 parks through 2010!
Fuel Hazard Projects

In 2008, the Park undertook three fuel reduction projects totaling 123 acres in key high priority areas. (See attached map) These objectives of these projects were to

- Create fuel breaks by utilizing the existing network of trails and roads
- Reduce wildfire hazards by reducing tree densities, removal of ladder fuels and modifying stand structure
- Reduce the threat of insect and disease attacks by reducing stand densities and improving retention tree vigor

Care is taken in timing forest management projects to avoid negative impacts during elk calving season and to minimize inconvenient trail and road closures for visitors.

Long Term Benefits

These projects will provide long term benefits to several aspects of the Strategic and Stewardship Plans. Not only will the fire hazard be reduced, opening the forest stands provides increased wildlife habitats, a mimic natural forest succession, and improves forest health and vigor which will reduce the occurrence of insect or disease epidemics. Maintenance plans are in place for future forest treatments.
The Coalition for the Upper South Platte (CUSP), a local nonprofit watershed organization, continues to coordinate and manage forest projects within Teller County and surrounding areas. CUSP operates the Divide Slash Site, and The Neighborhood Fuels Reduction Program. Both programs provide essential services to the community by providing residents a location to drop off woody debris from owner performed forest work, and an onsite chipper service. CUSP acts as a fiscal host and project manager for other forestry work as well, offering contracts for larger forest management projects, with funding attained from a variety of sources. In addition, CUSP maintains a six-person fuels reduction crew that performs projects around Teller County and in surrounding communities.

Divide Slash Collection Site (www.divideslash.org)
In 2007 CUSP assumed responsibility of the Divide Slash Collection Site and entered into an agreement with Teller County to take over all aspects of operation of the Divide Site. The Divide Slash Collection Site is centrally located within Teller County and is easily accessible by major transportation routes.

2007 -2011
Annual average of 1400 loads per year and 86 acres treated.

Neighborhood Fuels Reduction Program / CUSP Fuels Crew
CUSP purchased a large capacity wood chipper in 2003 and currently operates the Neighborhood Fuels Reduction Program, which provides two distinct services; chipping of forest waste created by homeowners working on their own land or for slash management at fuels reduction and forest management operations completed by CUSP staff. Members of the CUSP field crew are certified as wildland fire fighters, working with area fire departments. They also use their fire skills to manage forests and handle slash through prescribed fire and pile burns. CUSP partners with another nonprofit, Help The Needy, to provide area residents with fuel wood.

2005-2011
300 acres per year on average treated through the Neighborhood Fuels Reduction Program

Created/burned 2496 piles
Cut 395 cords for needy community members
In 2008 the County and the Woodland Park area were selected as a demonstration site from the Front Range Fuels Treatment Partnership Roundtable. With the selection of Woodland Park as a demonstration site came the designation and creation of The Woodland Park Healthy Forest Initiative. CUSP serves as the WPHFI facilitator.

The geographical boundary was selected due to its Wildland-Urban Interface (WUI) characteristics, and because of the high fire risk identified in the 2005 Teller County CWPP. The ongoing project is designed to foster improved local forest management and reduce fire risk through, contiguous treatments across jurisdictional boundaries, paired with local utilization and processing facilities for woody biomass, and to foster active participation by local residents.

The Woodland Park Healthy Forest Initiative area (WPHFI) comprises 63,500 acres, including and the City of Woodland Park, and surrounding areas of Teller County. The area has 127 subdivisions and includes approximately 27,000 acres of US Forest Service land in the Pike National Forest. Like the National Forest Area, the WPHFI area is very densely forested in mixed conifer (primarily Ponderosa Pine and Douglas Fir), with steep terrain and limited access. In June of 2010 the WPHFI CWPP was completed.

American Recovery and Reinvestment Act (ARRA)

In 2009 CUSP received significant funding for projects in the southern five counties of the Front Range Roundtable area (Teller, Douglas, El Paso, Jefferson, Park). Thanks to this funding, CUSP has worked to write and update over a dozen CWPP’s, including xx in Teller County. CUSP has also implemented CWPP treatments across the five-county area. CUSP has offered and managed a number of projects that were completed by local contractors through an open-bid process. ARRA brought $1.18 million into the region for forest work over a twenty month period.

Teller County Acres Treated (WPHFI and ARRA): 2009 through June, 2011

2009: 322 acres
2010: 324
2011 (through June 30th): 330 acres
Private Land Mitigation Projects

The Colorado State Forest Service tracks acres of fuel mitigation on accomplished private and state lands as a result of CSFS involvement through cost share, forest agriculture, and other landowner assistance programs. Twice yearly the Woodland Park District office sends surveys to contractors to track acres that have been done without direct CSFS involvement. The data shows 3,455 acres since the Teller CWPP was written in 2005.

There are undoubtedly some acres that have not been reported. Often landowners do mitigation without direct CSFS involvement or without the services of a contractor, and these are not reported. Since the CWPP was written the CSFS, CUSP and others have made concerted efforts to educate landowner about the importance of fuel mitigation and thinning for forest health. Many landowners have taken these messages home and have done mitigation on their own initiative.
Section 6.5
WILDFIRE HAZARD AREAS
Certain lands in Teller County have been identified by Federal, State, and County fire protection and emergency services agencies as having high potential to pose wildfire hazards to human life and property. While the causes of wildfire are many, in Teller County threats from over-vegetation, the naturally occurring number of lightning strikes, human activities in the National Forest and elsewhere, and increased development of private lands surrounded by or adjoining and/or adjacent to State and Federal land, are real. When the Standards for approval of a development permit application require that Wildfire Hazard Areas be satisfactorily addressed, the provisions of Section 6.5 Wildfire Hazard Areas apply.

A. Purpose. These Regulations are intended to help ensure that development avoids Wildfire Hazard Areas whenever possible. When it is not possible to avoid these areas, these Regulations provide Standards to minimize the potential impacts of these hazards on the occupants of the property and, as applicable, the occupants of adjoining and/or adjacent properties.

1. Time of Initial Development. Except as may otherwise be approved and collateralized in phases by the Board of County Commissioners for a phased project, all provisions for the reduction or elimination of wildfire hazards, including roads, water supply and delivery system, “defensible space,” and other fire protection and mitigation measures, will occur at the time of initial development, and, as necessary, be adequately collateralized.

B. Submittal Requirements. If in an area identified as having Moderate, High, Severe, or Extreme Fuel Hazard according to the map(s) contained in the Teller County Community Wildfire Protection Plan adopted June 2, 2005 by the Teller County Board of County Commissioners, or if in a subdivision specified in that Plan as having a Category II or III Property Loss Hazard rating; or if in an area subsequently determined by the County to be potentially wildfire hazard prone, Applicant shall provide either:

1. Evidence prepared by a professional forester that the proposed development is not in a Moderate, High, Severe, or Extreme Fuel Hazard area or having a Category II or III Property Loss Hazard rating; or
2. Evidence that the Standards of Section 6.5.C are met.

C. Standards
1. Hazards Minimized. The development is designed to minimize conditions that compromise public health and safety and help protect private property, and ensure by enforceable means, either public or private, that these conditions will be maintained. Techniques to minimize these hazards include the following:

a. Incorporating appropriate location-specific “defensible space” fuel modification requirements into protective covenants or other development documents (see Figure 6-2: Creating Defensible Space following). “Defensible space” requirements may include ensuring that:

 (1) Trees and brush are cleared around buildings, and the clearance maintained.
 (2) Grasses are kept mowed to a maximum of four inches.
 (3) Ground litter around structures is removed.
 (4) The structure of surrounding foliage is kept pruned to prevent “fuel ladders.”
 (5) Trees are thinned to provide adequate crown separation.
 (6) The recommendations of the Teller County Community Wildfire Protection Plan for that area are followed.
b. Modifying or designing structures in terms of roof materials, screening of vents, and the enclosure of decks, eaves and overhangs.
c. Constructing exterior walls of fire retarding materials.
d. Providing emergency water supplies.
e. Siting structures to compensate for hazardous conditions associated with slope and aspect (see Figure 6-3: Slope and Aspect Compensation Example below).

f. Other such mitigation measures as may be recommended by Protection District or in instances where the proposed development lies outside of any District boundaries, by the Teller County Fire Marshall or his or her designated representative.
g. Otherwise ensuring that the recommendations of the Teller County Community Wildfire Protection Plan for that area are followed.
2. **Adequate Roads and Firebreaks.** The development has provided adequate roads for access by fire trucks, fire fighting personnel, and other safety equipment, as approved in writing by the local Fire Protection District, or in instances where the proposed development lies outside of any District boundaries, by the Teller County Fire Marshall or his or her designated representative.

3. **Adequate Water Supply and Facilities for Fire Suppression.**
The development has provided a legal, adequate, and dependable supply of water for fire suppression, and the system for its delivery, as approved in writing by the local Fire Protection District, or in instances where the proposed development lies outside of any District boundaries, by the Teller County Fire Marshall or his or her designated representative.

4. **Referral Agencies.** The specific recommendations, if any, of the Colorado State Forest Service and local Fire Protection District, or in instances where the proposed development lies outside of any District boundaries, the Teller County Fire Marshall or his or her designated representative, are incorporated into the development plan. In the event that there are no specific recommendations, the following shall apply:

 a. **Colorado State Forest Service Guidelines and Standards.**
The Colorado State Forest Service “defensible space” and “firewise construction” guidelines for wildfire protection and mitigation are followed.
TELLER COUNTY INSECT AND DISEASE CONDITIONS

Literally thousands of insect and diseases are present in the forests of Teller County—or any forested area for that matter. Like the common cold, most do no serious or lasting damage. When in poor health, trees, like humans, are more prone to infection from other causes; the concept of preventive medicine applies to forests, as well. Maintaining forests in good health will prevent problems in the future.

![Map of 2010 Insect and Disease Activity in Colorado Forests](image)

Figure 1: Aerial detection of insect and disease conditions in Colorado from the 2010 flight. Courtesy of Colorado State Forest Service.

Every summer, insect and disease specialists from the USDA Forest Service and Colorado State Forest Service (CSFS) survey Colorado’s forests from the air to monitor insect and disease outbreaks. These flights are an excellent means to find new areas of insect and disease activity and monitor trends in existing outbreaks. Maps of the previous year’s findings are published in January and can be found on the CSFS website at http://csfs.colostate.edu/pages/common-insects.html. This link also contains more detailed information on the insect and disease issues presented here.

The 2010 flight did not pick up large areas of insect and disease activity in Teller County, but a lack of large scale insect and disease activity does not infer no insect or disease activity. All the insects and diseases that are shown on the above map are doubtless active within Teller County, but at low levels not detectible from the air. Landowners should monitor their forests several times a year for new insect or disease activity.

Residents should not be complacent. Particularly in view of the current drought, forest trees are stressed and vulnerable to insect and disease attack.
The unnaturally dense forest condition that causes the fire threat in Teller County also creates the potential for cyclical insect and disease outbreaks. Trees weakened by overcrowding and lacking adequate water and sunlight are more susceptible insects and disease. When planning wildfire hazard mitigation projects, it is important to address current insect or disease issues and prevent those that are likely to occur. Following is information on some of the common forest insect and disease problems that have been identified in the county.

Dwarf Mistletoe

The most prevalent disease problem in Teller County forests is, in fact, not detectable from aerial surveys. Dwarf mistletoe infects large areas of pine and Douglas-fir trees throughout the county. Aerial flights do not detect dwarf mistletoe pockets, so they are not shown on the above map.

Dwarf mistletoe is a parasitic plant that robs moisture and nutrients from the host tree. Over many years, it causes the tree to decline in vigor and eventually may cause death. More commonly, the tree declines to the point where bark beetles attack and kill it.

Three common species of dwarf mistletoe are found in the region, each named after its principle host – ponderosa pine, lodgepole pine and Douglas-fir. Locally, ponderosa and lodgepole varieties grow on any pine species, but Douglas-fir dwarf mistletoe is exclusive to Douglas-fir trees. Spruce, true firs and deciduous trees are immune to all three species of dwarf mistletoe.

The most obvious symptom of dwarf mistletoe infection is the dense, distorted growth of the branches, called witch’s brooms that appear to be twisted or tied in knots. The shoots of ponderosa and lodgepole dwarf mistletoe are visible on the branch as thick fingerlike growths extending out of the branch or trunk. The shoots of ponderosa and lodgepole dwarf mistletoe are long and obvious to casual observation, but Douglas-fir dwarf mistletoe shoots are shorter than the needles and are not easy to see.

Mistletoe shoots are only reproductive structures with no photosynthetic function. Removing the shoots from a branch does not control dwarf mistletoe, except to temporarily halt seed production. Structures called sinkers, (analogous to roots in plants) embedded in the wood cause the damage, and the mistletoe plant continues to absorb the host tree’s water and nutrients. Shoots that are removed grow back in two or three years.

During the growing season, dwarf mistletoe shoots develop berries containing a seed. In August, the berries fill with water and explode, shooting the seed as far as 40 feet. Most seeds strike branches of the host tree and do not travel the full 40 feet, so the expansion of dwarf mistletoe pockets averages two feet per year.
When the seed strikes a branch, it germinates and the sinkers penetrate the bark into the tree’s conductive tissues. The growing mistletoe begins to steal the tree’s food and water. The first visible symptom of infection is swelling in the branch at the site of the growing mistletoe plant, but nubs of the emerging shoots won’t be visible for three years and a shoot won’t bear its first seeds until seven years after germination. As seeds spread, all susceptible trees in the vicinity may become infected; it is extremely rare to find an isolated infected tree in the forest.

The tendency of mistletoe to infect all trees in a stand makes eradication difficult. No effective chemical treatment exists for mistletoe, and the only way to kill the parasite is to kill the host. In stands where only the susceptible species of tree exists, total eradication of the mistletoe would require a clearcut, which is unacceptable to most landowners.

Fortunately, mistletoe kills trees slowly, so it is not necessary to eradicate the parasite. The disease can be controlled by a program of thinning to increase tree vigor. Pruning the more heavily infected branches also helps, even if not all the mistletoe is eliminated. The final step in the process is to replant with non-susceptible species so that new trees will grow before the mistletoe kills the remaining trees.

The spread of mistletoe can be halted by a minimum 40-foot buffer zone between infected and non-infected trees. In this situation, cut 20 feet into non-infected trees to remove any mistletoe that is not yet visible; cut the remaining 20 feet into the infected stand. Non-infected trees outside the buffer should be checked each spring for mistletoe and any infected branches should be immediately pruned before seeds develop.

In forest stands with mixed tree species, it may be possible to eliminate all mistletoe by retaining only non-susceptible trees if they are in good health. For example, in a mixed stand of ponderosa and Douglas-fir, if the ponderosa are infected, leave only Douglas-fir. Aspen are always desirable trees in situations where fire mitigation and mistletoe control are objectives, as aspen are not prone to crown fires and are immune to all species of dwarf mistletoe.

Dwarf mistletoe treatment is a complicated process that depends on the site conditions and the landowner’s tolerance for cutting trees. In most cases, a combination of treatment methods will best suit the landowner’s objectives. Consultation with a qualified forester is recommended to develop an effective and acceptable treatment plan.

Mountain pine beetle

Unlike the Western Slope, mountain pine beetle (MPB) is at normal levels in the county. The beetles have crossed the Continental Divide in northern Park County and northern Larimer County, and activity currently is confined mostly to higher altitude lodgepole pine. It presently is not known if or when the beetles will reach into the lower-elevation ponderosa forests, but where they have reached ponderosa, heavy mortality has occurred.

The 2010 flight detected 100 acres affected in Teller County, but several points should be born in mind about the statistics developed from the flights. First, since trees fade almost a year after they are infested, the trees detected in the 2010 flight were actually attacked in 2009. Second, the flight can only pick up
areas where numerous trees are infested. Individual scattered MPB trees are not detected by the aerial surveys, so landowners should not assume from this data that they have no infested trees on their property.

Several areas of MPB activity along the Highway 24 corridor near the Teller, El Paso County line have been successfully treated by removal of infested trees and forest thinning over the past two years. These pockets indicate that, even before the current drought, Teller County forests are at risk of epidemic mountain pine beetle outbreaks.

Adult beetles fly from midsummer through the first frost, although the vast majority fly between mid-July through the middle of September. Females seek a large, weak tree in which to mate and lay eggs. Vigorous trees generate enough pitch to prevent the female from burrowing through the bark, and this attempt by the tree to prevent entry creates the pitch tubes symptomatic of beetle attack. Pitch tubes are not a particularly reliable indicator of a successful attack. If pitch tubes are seen, check for reddish boring dust (fine sawdust) at the base of the tree and in the bark crevices. Boring dust is a more reliable indicator of successful attack.

Once a female penetrates the bark, she hollows out a circular mating chamber between the bark and the wood, releasing a pheromone (scent) to attract a mate. The pheromone also attracts additional females to the tree and the tree is attacked en masse. After mating, the female burrows up the trunk between the bark and wood laying eggs. She inoculates the tree with spores of bluestain fungus, which provides food for the larvae, and the fungus clogs the tissues that conduct water throughout the tree, leading to death within a few weeks.

Eggs hatch within a few days. The developing larvae feed horizontally from the maternal gallery over winter. The vertical maternal gallery and horizontal larval galleries are characteristic of the mountain pine beetle. The feeding larvae spread the bluestain fungus horizontally through the tree, and it becomes visible in the wood around February. The presence of bluestain is absolute confirmation that beetles have successfully attacked a tree.
Woodpeckers feed on the larvae through the fall and winter. The holes made by the woodpeckers are a visual clue to an infested tree. Untrained observers often are confused by the holes woodpeckers make when they feed on beetle larvae and sapsuckers feed on the sap. Woodpecker feeding is characterized by random holes about one-half inch in diameter that make it appear as though the tree was peppered with a shotgun. Sapsuckers, on the other hand, make a small hole about one-eighth inch in diameter, and the holes are in straight lines or a grid pattern. Sapsuckers do not indicate the presence of beetles in the tree.

Although the tree is dead within a few weeks of a successful attack, needles remain green until the following spring. Within the space of a few weeks, in late May or early June the tree will turn straw-yellow and then reddish-brown. Once beetles invade a tree, nothing can be done to save it; the tree must be cut and disposed of in a way that will kill the beetles. No insecticide is available to kill beetles under the bark; thus, some sort of mechanical treatment is necessary. Any wood greater than four inches in diameter may harbor beetles and must be treated.

Following are treatment options for beetle-infested trees:

- Cut the tree and move all wood greater than four inches in diameter to a designated mountain pine beetle-safe site – usually an area at least one mile away from the nearest pine tree. The Colorado State Forest Service office in Woodland Park (719-687-2921) should be contacted for the location of approved safe sites.
- Move all wood to a landfill or bury it under at least eight inches of dirt.
- Completely debark any wood that is larger than four inches in diameter.
- Chip the tree. Many tree services have chippers capable of chipping large diameter trees. The beetles are killed when the wood is chipped.
- Cover wood with at least six-mill clear plastic. This method, known as solar treatment, warms the wood to lethal temperatures and increases moisture, encouraging mold growth in the logs to kill the beetles. Treat the wood properly for successful control. Cut into firewood lengths and stack no more than two logs high. Be sure there are no exposed stubs or sharp edges that might tear the plastic. Trench around the pile and, if possible, wet down the pile to encourage mold growth. Cover the pile with plastic, push the edges of the plastic into the trenches, and seal with dirt. Check periodically to be sure the plastic has not torn. If torn, it can be repaired with duct tape.

It is best to check for infested trees in October of each year – remember that infested trees, although dead, are still green at this time. Pitch tubes and boring dust will be the most obvious clues. If infested trees are located early, there is adequate time to treat them.

While no insecticide effectively treats infested trees, spraying with insecticides such as carbaryl or permethrin prevents attack. Preventive sprays will not kill beetles under the bark. Spray trees between May 1st and July 1st each year for maximum effectiveness. It is not practical to spray every tree on a large tract of land, so choosing which trees to spray depends on the landowner’s budget and the value of individual trees to the landowner. It is advisable to solicit bids from several different spray companies, as prices can vary widely. It also is wise to request and check references.
Thinning forests for increased health and vigor by far is the best preventive measure for mountain pine beetle. Because trees require several years to respond to thinning, it is best done before beetles reach epidemic levels. Follow thinning guidelines for wildfire mitigation to reduce susceptibility to MPB.

Western Spruce Budworm

The western spruce budworm (WSBW), a defoliating insect of Douglas-fir and spruce, is a growing threat. Depending on the intensity of defoliation, budworm may damage or kill the host tree. The 2010 aerial survey detected 2,700 acres of budworm activity in Teller County, compared to no acres of activity in 2009. Site visits by CSFS foresters and reports from landowners indicate that WSBW is active in Ridgewood and Colorado Mountain Estates. Other areas of the county are likely affected as well.

A severe outbreak of WSBW in the late 1980s damaged or killed large areas of Douglas-fir throughout the region. Trees with dead branch tips or those with forked or dead tops are legacies of the previous epidemic. Many of the dead Douglas-fir were first weakened by budworm and then killed by Douglas-fir beetles (see section on Douglas-fir beetle).

The grayish, mottled adult moths are active in July and August when females lay eggs on the underside of needles. Eggs hatch within days and the larvae migrate to bark scales where they overwinter. The following spring, larvae invade the new buds and feed on the emerging needles. Webbing around the new growth is an obvious sign of budworm activity and if heavy defoliation continues for three to five years, the tree will die. If shorter-term defoliation occurs, the branch tips or the entire top of the tree could die.

Natural predators or severe winter weather helps control budworm populations, which keeps them at non-threatening levels. Spraying with *Bacillus thuringensis* may be useful to protect high value trees, but is not practical on a large scale.

Ips (engraver) Beetles

Ips beetles, relatives of the mountain pine beetle, usually attack trees less than four inches in diameter and, in such circumstances, may be useful in thinning dense stands of young trees. Thus, it usually is not considered as threatening as its larger cousin. Ips will attack larger trees if they are severely weakened by disease...
(most often dwarf mistletoe), or are damaged by construction, lightning strikes or in horse corrals where soil compaction injures the roots. Like the mountain pine beetle, ips burrow beneath the bark and inoculate the tree with bluestain fungus, often following mountain pine beetles into larger trees.

The differences between mountain pine beetle and ips are significant to anyone implementing a forest management program. In contrast to MPB, which produce one generation per year, ips may produce up to four. Ips become active in spring when the weather exceeds 50 degrees F, developing from egg to adult within eight weeks. They continue to attack trees until the first fall frosts. For this reason, preventive spraying should be done with permethrin or carbaryl in April and repeated in July. When spraying preventively for ips, it is important to spray the branches, as well as the trunk.

Ips attack causes no pitch tubes to form, so the only visual clue is boring dust or woodpecker holes in the trunk. Smaller trees quickly turn reddish-brown, but when they attack larger trees, ips often infest only the upper portion of the tree. The first symptom is browning of the top, but subsequent generations emerge and continue down the tree.

Ips will infest green slash and downed logs from forest management projects. If slash is not promptly treated, ips will emerge to attack living trees; treat slash within four to six weeks after cutting. If weather conditions permit, thinning trees in winter when ips are dormant will prevent problems with beetles in slash. However, slash cut after March 1 may still be green enough to attract ips when the weather warms.

Chipping slash will kill ips beetles. Lopping and scattering slash into lengths less than 24 inches promotes rapid drying and prevents infestation. Slash cut late in fall that is subsequently infested can be treated or piled and burned over the winter, but untreated slash left over the winter will produce live broods the following April. Due to their short lifecycle, solar treatment of ips-infested logs is ineffective. Bucking larger diameter logs and promptly splitting them into firewood accelerates the drying process and usually is effective in preventing ips infestations.

Many high value trees have been lost as a result of the common, and ultimately costly, practice of stacking firewood against green trees. Ips beetles will burrow out of infested firewood directly into standing trees.

Douglas-fir Beetle

Douglas-fir beetles also are present in the county, but are not killing large numbers of trees. The 2010 flight detected only six acres affected in Teller County, but, as is the case with mountain pine beetle, scattered single trees would not be detected. If the current western spruce budworm defoliation seriously harms trees in the area, the beetles may become a serious threat. Some similarities exist between Douglas-fir beetle and MPB, but there are important differences that require different treatment strategies for infested trees.
Both species burrow under the bark to lay eggs and both carry blue stain fungus that kills the tree within a few weeks of infestation. Each beetle prefers dense stands with large diameter, low vigor trees; thus, thinning Douglas-fir for wildfire mitigation also reduces susceptibility to beetles.

Adult Douglas-fir beetles emerge in mid-June, and a few adults may overwinter in trees and emerge as early as April. There are no insecticides available for treatment of beetle infested trees. Infested trees should be treated prior to April of each year to prevent emergence of overwintering adults. Effective treatments are whole tree chipping, debarking of all wood greater than four inches in diameter, transportation to a safe site or landfill, and burying under eight inches of dirt. Solar treatments should begin in the fall, preferably early fall.

Preventative spraying is an option for high value trees. Permethrin or carbaryl are effective as Douglas-fir beetle preventatives, but, because of the earlier emergence of overwintering adults, spraying should be done in April. Preventative sprays are not an effective treatment for infested wood.

Unlike MPB-infested trees, Douglas-fir trees do not form pitch tubes when attacked, so there may not be an obvious visual indication of infestation. Some Douglas-fir bleed sap when attacked, resulting in rivulets of sap on the trunk; however, this does not occur in all infested trees. Trees should be checked carefully for boring dust in early October. Later in the year, woodpecker holes may provide a visual clue that trees are infested.

Trees partially defoliated by western spruce budworm are particularly susceptible to attack by Douglas-fir beetles. Injury, overcrowding or any conditions that adversely affect the vigor of the tree will make it more susceptible. Managing the forest for open, vigorous stands of Douglas-fir is the best prevention.

Aspen Diseases

Many diseases affect aspen trees – far more than can be covered in the scope of a Community Wildfire Protection Plan. The common thread among aspen diseases is that landowners can do little about any of them. Treatments are always costly and usually ineffective.

A rather cynical forester once described aspen this way: “New aspen sprout from the roots. The tree grows. A deer rubs his antlers on the bark, and a fungus invades the wound. The tree dies. New sprouts come up from the roots.”

The quote reflects aspen’s role as a short-lived species that colonizes a site after fire or other disturbances remove existing conifers since sun-loving aspen do not grow well in shade. After a fire kills the existing trees, aspen roots resprout vigorously in the full sunlight. As aspen shade the site, shade-tolerant conifers sprout in the aspen understory. Eventually, the conifers will over-top and shade out the aspen; thus, disturbance – usually fire – is necessary to maintain pure aspen stands.

Aspen are prized by most landowners and, as noted earlier, are valuable trees for fuel breaks and wildlife. Diseased aspen are a serious concern for most residents. The most logical way to consider aspen diseases within the scope of this plan is to divide them into diseases of the stem and diseases of the leaves.
Most fungal diseases of aspen stems are the result of wounds to the bark. The thin bark is easily wounded; when it is, several species of fungi may invade the tree. If the tree is healthy, it will tolerate the fungus for many years, but unhealthy trees usually will succumb within a short time. As noted earlier, little can be done to treat an aspen invaded by fungus. The tree will die and resprout. It is impossible to prevent deer and elk from wounding aspen, but it is possible to prevent human wounding of the tree. Avoid any practice that will injure the bark. Managing the forest to give aspen adequate sunlight will improve their vigor and tolerance to disease.

Fungal diseases of the leaves are a concern to landowners, but they rarely cause any real harm. Several fungi attack aspen leaves and usually are recognized by yellow or brown spots on the leaves. Leaf diseases are more common in wet years, as humid conditions are favorable for the fungi. Treatment is not necessary, but raking up dead leaves to reduce the number of fungal spores may reduce the infection of new leaves. If the following year is drier, there will be less fungus. The CSFS website at http://csfs.colostate.edu/pages/forest-types-aspen.html has detailed information about the many insect and disease problems of aspen.

A new phenomenon observed in recent years is “sudden aspen decline,” and ten acres of moderate decline were observed in Teller County in 2010. Aspen stands that appear to be healthy undergo rapid dieback and decline. A lack of resprouting after the older aspen die is the most disconcerting aspect of sudden aspen decline.

The causes of sudden aspen decline are not completely understood and are a subject of debate among researchers studying the phenomenon. The stress of the recent drought followed by invasion of insects and disease are cited by most researchers as likely causes. Lack of aspen regeneration due to fire suppression also has been cited as a contributing cause by some scholars. Low elevation, open aspen stands on south and west facing slopes are most often affected. Tree age does not appear to be a factor.

Given the uncertain cause of sudden aspen decline, the best method of prevention also is unclear. Encouraging regeneration of aspen clones by clearcutting or burning while they are healthy seems to hold the most promise. Because sudden aspen decline is a landscape level phenomenon, landowners with small lots may not be able to address the problem. Currently, the best option is to manage for healthy aspen stands.

Winter Drying and Drought Stress

Not all tree problems are the result of invasion by insects or disease agents. Many are the result of environmental conditions. With the current drought, an increase of drought related conditions is inevitable. Usually this takes the form of needles browning in the late spring and early summer.

Dry Chinook winds during the winter will dry needles when trees cannot absorb water from frozen soils. Drying usually appears on the south or south west sides of the tree first, but can appear over the entire tree. Drying usually begins at the tips of the needles and progresses toward the base, and appears similar to fading from mountain pine beetle. If the cause is winter drying, the new growth can be seen at the tips of the branches, but trees fading from bark beetles will not show new growth. Living buds will be soft and pliable.
Summer drought stress usually is indicated first by browning at the tips of needles or by yellowing or browning at the margins of leaves on deciduous trees.

On large acreages there is little that can be done to prevent drying, and damage already done to leaves or needles cannot be reversed. Most native trees are drought tolerant and can survive dry periods and tolerate minor drying. In zone one of defensible spaces, it may be possible (many well permits prohibit outdoor irrigation) to prevent drought stress by giving trees additional water. Deeply irrigating soil once a month during the growing season (to a depth of about 12 inches) will provide sufficient moisture. If the ground is not frozen during the dormant seasons irrigation every two months should be sufficient. Trees with sufficient moisture content will be less prone to ignition in a fire than those stressed by drought.

Landowners should be aware that conditions similar to drought stress can be caused by over watering native trees, and the guidelines for watering trees should not be exceeded. Excessive watering fills soil pores with water, depleting oxygen in the soil. Without soil oxygen, roots cannot absorb water and will exhibit drought symptoms. Native plants are adapted to tolerate the normal arid conditions of the local environment.

 References:

Wildfire Hazard By Fire Protection District - Reprinted From The Teller County PDM 2008.

August 2008
Mapping Protocol - Teller County 4.105 Multi-Hazard Mitigation Plan

The County’s parcel layer was used as the basis for the inventory of developed parcels. GIS was used to create a centroid, or point, representing the center of each parcel polygon, which was overlaid on a subdivision polygon layer which has wildfire hazard ratings within its attributes. For the purposes of this analysis, the subdivision that intersected the centroid was assigned with the wildfire zone rating for the entire parcel.

Another assumption with this model is that every parcel with an improved value greater than 0 was assumed to be developed in some way. Only improved parcels, and the value of those improvements were analyzed and aggregated by property type and wildfire zone. Population was estimated by applying the 2000 Census average household size of 2.56 to each improved parcel. The parcels were segregated and analyzed based on the summarized number of structures and population estimate by subdivision as well as unincorporated and incorporated areas. The results are summarized in Tables 4.43 through 4.44. Table 4.45 groups the subdivisions by hazard rating, in order of estimated structures and population, for those subdivisions with a population of 100 or more. Appendix E contains the results for all subdivisions.

Based on this analysis, the Teller County Planning Area (including unincorporated county and all cities) has significant assets at risk to wildfire. 545 improved parcels are within the Extreme hazard zone, a total value of $85,878,856. 2,183 parcels are within the Severe hazard zone, a total value of $339,210,191. 4,159 parcels are within the High hazard zone, a total value of $756,541,864. The unincorporated areas of the county contain the subdivision with the highest risk, but Woodland Park has potential for significant wildfire losses as well. Based on observations in wildland-urban interface fires, structures and contents are often completely destroyed, thus the estimated total value also represents potential dollar losses, not including content losses. Content losses could be estimated by adding an additional 50% of the structure value. Note: a wildfire is not likely to burn all the wildland-urban interface areas in Teller County at once.

The population estimates by subdivision assumes complete occupancy. This should be considered ‘worst case,’ as many properties, possibly as much as 25%, are either second homes or vacation retreats that sit unoccupied during much of the year. The high occupancy times typically coincide with the wildfire season. The wildfire hazard by subdivision ratings may not reflect improvements, such as defensible space, that may have been made since 2005.

Note that assessed values were separated out from the total assessed value so that losses to structures could be quantified. However, land value can decline following a large wildfire. This reduction in property value results in lower property taxes collected, and can significantly impact the County’s tax revenue.

For more information regarding the Teller County Multi Hazard Mitigation Plan, 2008, Visit the Office of Emergency Management link at the Teller County Website, www.co.teller.co.us
Contacts For More information

Colorado State Forest Service, Woodland Park Office
113 South Boundary St., PO Box 9024
Woodland Park, CO 80866
Phone: 719-687-2921
Website: www.csfs.colostate.edu (use search box at upper right)

US Forest Service, Pike District
601 S. Weber Ave.
Colorado Springs, CO 80903
Phone: 719-636-1602
Website: www.fs.fed.us/R2

TELLER COUNTY FIRE DEPARTMENTS - FOR EMERGENCIES ALWAYS CALL 911
Cripple Creek Emergency Services
Address: 147 E. Bennett Ave, Cripple Creek, CO 80813
Telephone (719)689-0240 non emergency Fax: (719)689-0292

Divide Fire Protection District
Address: 103 Cedar Mountain Rd., Divide Co 80814
Telephone (719)687-8773 non emergency Fax: 719-687-9334

Florissant Fire and Rescue
Address: 2606 W. Hwy 24, Florissant, CO 80816
Telephone: 719-748-3090 non emergency Fax: 719-748-5342

Four Mile Fire Protection District
Address: 8437 Teller Rd. 11, Florissant, CO 80816
Telephone 719-689-3417 non emergency Fax: 719-689-0283
www.Fourmilefire.net

Victor City Volunteer Fire Department
Address 501 Victor Ave, Victor CO 80860
Telephone 719-689=2284 non emergency Fax: 719-689-2703

Mountain Communities Volunteer Fire Department
15000 Westcreek Rd, Woodland park, CO 80863
Telephone: 303-647-2361 non emergency Fax: 303-647-2361

Northeast Teller County Fire District
Address: 1010 Evergreen Heights, Woodland Park, CO 80863
Telephone: 719-687-1866 non emergency Fax: 719-687-1885
www.netellerfire.org
Websites For More Information

Creating Wildfire Defensible Zones: www.csfs.colostate.edu/pdfs/6302.pdf

Firewise Construction: www.csfs.colostate.edu/pdfs/construction_booklet.pdf

Firewise Plant Materials: www.csfs.colostate.edu/pdfs/6305.pdf

Forest Home Fire Safety: www.csfs.colostate.edu/pdfs/6304.pdf

Forest Landscape Restoration: http://www.fs.fed.us/restoration/CFLR/index.shtml

Homeowner Firewise Information: www.Firewise.org

Other grants and information: http://www.rockymountainwildlandfire.info/grants.htm

Teller County Building Department: http://www.co.teller.co.us/CDSD/BuildingDept.aspx

Teller County Office of Emergency Management: http://www.co.teller.co.us/OEM/default.aspx

Teller County Roads, Parks, Open Space: http://www.co.teller.co.us/PublicWorks/default.aspx

Ute Cultural Trees: www.pikespeakshsmuseum.org/Museum/Main/Headings/Ute